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Abstract

A new fourth-order six-stage Runge–Kutta numerical integrator that requires 2N -storage (N is the number of de-

grees of freedom of the system) with low dissipation and dispersion and a relatively large stability interval is proposed.

These features make it a suitable time advancing method for solving wave propagation problems in Computational

Acoustics. Some numerical experiments are presented to show the favourable behaviour of the new scheme as compared

with the LDD46 and LDD25 methods proposed by Stanescu and Habashi [J. Comput. Phys. 143 (1998) 674] and the

standard fourth order Runge–Kutta method.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Explicit Runge–Kutta (RK) schemes with low dissipation and dispersion (LDD) and large stability in-

tervals are among the most popular time advancing schemes for computational acoustics. Thus, Hu,

Hussaini and Manthey proposed in [7] several low-dissipation and low-dispersion Runge–Kutta schemes

(LDDRK) whose stability functions were constructed to minimize in some sense the dispersion and dis-
sipation errors while maintaining large intervals of stability, showing that they were very efficient for wave

propagation problems. Other RK schemes with the same aim have been proposed by Mead and Renaut [9]

in the context of pseudospectral discretizations. A large number of alternative proposals for problems with

different kinds of oscillating solutions have been given, among them those of Simos and coworkers (see [1]

and [10]) and the present authors [2].
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Since standard problems in Computational Acoustics usually have large memory requirements, to im-

prove the efficiency of time advancing numerical schemes for these problems, some authors like Williamson

[13], Carpenter, Kennedy and Lewis [4,8], Stanescu and Habashi [11] and the present authors [3] have
proposed special RK schemes that can be written using minimum storage (i.e. 2N -storage, where N is the

dimension of the first order differential system). Clearly, a suitable combination of good stability properties,

high order, low dissipation and dispersion and low storage may lead to a near optimal scheme for the type

of problems under consideration.

The aim of this note is to propose a new fourth-order RK scheme with six stages which attempts to be

optimal in the above sense. It is shown that the new scheme compares favourably with the two similar schemes

LDD46 and LDD25 given by Stanescu andHabashi in [11] that were constructed from stability functions that

minimize the dispersion and dissipation errors for linear wave propagation proposed by Hu et al. [7].
The paper is organized as follows: In Section 2 we introduce the class of minimum storage schemes under

consideration and the criteria used to determine the available parameters in order to get the desired order,

stability and dissipation and dispersion properties. In Section 3 some numerical experiments are presented

comparing the behaviour of the new scheme with two optimal low-dissipation and low-dispersion schemes

with five and six stages of Stanescu and Habashi [11] denoted by LDD25 and LDD46 as well as the popular

fourth order RK method [6, p. 138].

2. The choice of an optimal scheme in the class of minimum storage RK schemes

Suppose the time evolution differential system written in the form

d

dt
UðtÞ ¼ F ðUðtÞÞ; tP 0; ð1Þ

where t is the time, U : Rþ ! RN is the state vector of the PDE solution at the spatial grid points and F is

the operator containing the discretization of spatial derivatives. Since we are concerned with wave phe-

nomena with smooth solutions, the linear part of the right hand side function (1) will be assumed to have

purely imaginary eigenvalues and therefore the stability intervals under consideration of the numerical

schemes to be given below will be on the imaginary axis (see [7], Section 2).

The 2N -storage RK scheme that advances the state vector Un at tn to Unþ1 at tnþ1 ¼ tn þ Dt uses two N -

registers in which the following two N -vectors ui and Fi are successively stored

u1 ¼ Un; F1 ¼ F ðu1Þ;
u2 ¼ u1 þ Dtb1F1; F2 ¼ F ðu2 þ Dtc1F1Þ;

..

. ..
.

us ¼ us�1 þ Dtbs�1Fs�1; Fs ¼ F ðus þ Dtcs�1Fs�1Þ;
usþ1 ¼ us þ DtbsFs;

ð2Þ

and the state vector Unþ1 at tnþ1 is given by Unþ1 ¼ usþ1. Here b1; . . . ; bs and c1; . . . ; cs�1 are 2s� 1 real

parameters that define the minimum storage RK scheme. Note that our 2N -storage algorithm is not

equivalent to the low-storage algorithm used by Stanescu and Habashi [11].

This algorithm (2) can be written equivalently as the s-stage Runge–Kutta scheme

F1 ¼ F Unð Þ;
Fi ¼ F Un þ Dt

Pi�1

j¼1 bjFj þ Dtci�1Fi�1

� �
; ði ¼ 2; . . . ; sÞ

Unþ1 ¼ Un þ Dt
Ps

i¼1 biFi;

9>=
>; ð3Þ
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and it is usually specified by the lower triangular matrix A 2 Rs�s and the vector b 2 Rs given by

A ¼

0

b1 þ c1 0

b1 b2 þ c2 0

..

. ..
. . .

. . .
.

b1 b2 . . . bs�1 þ cs�1 0

0
BBBBB@

1
CCCCCA
; b ¼

b1
b2
..
.

bs�1

bs

0
BBBBB@

1
CCCCCA
: ð4Þ

Hence the 2N -storage time advancing method (2) is equivalent to the s-stage explicit RK scheme (3) with

ðA; bÞ defined by (4). Observe that the set of all s-stage minimum storage RK methods (2) or (4) depend on
ð2s� 1Þ parameters whereas a general s-stage explicit RK scheme depends on sðs� 1Þ=2þ s parameters.

In the following we will restrict our considerations to 2N -storage methods (3) with s ¼ 6 stages. By

introducing the vectors e ¼ ð1; . . . ; 1ÞT 2 R6 and c ¼ Ae 2 R6, the eight conditions on the coefficients ðA; bÞ
for order four (see [6], p. 153) can be written in the form

bTe ¼ 1; bTc ¼ 1=2; bTAc ¼ 1=6; bTA2c ¼ 1=24;

bTc2 ¼ 1=3; bTc3 ¼ 1=4; bTðc � AcÞ ¼ 1=8; bTAc2 ¼ 1=12:
ð5Þ

Here the dot product is the componentwise product and ck ¼ c � . . . � c.
The stability as well as the dissipation–dispersion properties of (3) or (4) are concerned with their be-

haviour for linear scalar problems F ðUÞ ¼ kU with k on the imaginary axis. We apply the method (3) to the

linear scalar test equation U 0 ¼ F ðUÞ � ixU , x 2 R, i ¼
ffiffiffiffiffiffiffi
�1

p
, obtaining

Unþ1 ¼ RðixDtÞUn;

where RðzÞ is the stability function of the method (3) given by the polynomial

RðzÞ ¼ 1þ
X6

j¼1

ðbTAj�1eÞzj:

The fourth order conditions (5) imply that bTAj�1e ¼ 1=j!, j ¼ 1; . . . ; 4, and introducing the real pa-

rameters given by b5 ¼ 5!ðbTA3cÞ, b6 ¼ 6!ðbTA4cÞ, the stability function can be written in the form

RðzÞ ¼ Rðz; b5; b6Þ ¼
X4

j¼0

zj

j!
þ b5

5!
z5 þ b6

6!
z6: ð6Þ

Now our goal is to choose the real parameters b5, b6 to satisfy the following requirements:

• Maximize the interval of absolute stability ½0; S� of (6) with S ¼ Sðb5; b6Þ defined by

Sðb5; b6Þ ¼ maxfdP 0; jRðim; b5;b6Þj6 1; 8m 2 ½0; d�g

• Maximize a measure L ¼ Lðb5; b6Þ associated to both dispersion /ðmÞ ¼ m� argðRðimÞÞ and dissipation
dðmÞ ¼ 1� jRðimÞj errors of (6) given by

Lðb5; b6Þ ¼ maxfkP 0; jdðmÞj < j/ðmÞj6 1:25� 10�3; 8m 2 ½0; k�g:

(Here we have taken 1.25� 10�3 as an upper bound of dissipation and dispersion errors in a similar way to

[7] where 10�3 has been taken).
It turns out that Sðb5; b6Þ and Lðb5; b6Þ cannot be maximized for the same set of values of b5 and b6.

Then we have maximized the continuous function ð1=2ÞSðb5; b6Þ þ ð1=2ÞLðb5; b6Þ, which amounts to

consideration of both functions with the same weight, in the compact set ðb5; b6Þ 2 ½0; 1� � ½0; 1�. Observe
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that for b5 ¼ b6 ¼ 0, Rðz; 0; 0Þ is the stability function of a four stage RK method with order four (for linear

equations) and Sð0; 0Þ ’ 2:75; and for b5 ¼ b6 ¼ 1, Rðz; 1; 1Þ is the stability function of a six stage RK

method with order four (for linear equations) and Sð1; 1Þ ¼ 0. The search of a maximum of

ð1=2ÞSðb5; b6Þ þ ð1=2ÞLðb5; b6Þ in the above set has been carried out numerically obtaining the values

b�
5 ¼ 0:9424; b�

6 ¼ 0:683201: In Table 1 we include the values of the parameters b5; b6 of our six-stage fourth

order stability function RnewðzÞ and the corresponding values of the stability function RhuðzÞ of Hu et al. [7],

as well as the values of S and L for both stability functions. Observe that, according to (6), our values of
b5; b6 have been scaled by the corresponding factorials in contrast with the values given in Table 2 of [7].

It should be remarked that other alternative measures of the dissipation and dispersion errors have been

used in the literature (see [2,12]). Thus, Van der Houwen and Sommeijer [12] consider the order of dissi-

pation k of explicit RK methods that is defined as the maximum integer k such that dðmÞ ¼ Oðmkþ1Þ, m ! 0

and similarly for the dispersion. These local measures are reliable for m ¼ xDt in a interval ½0; �� with �
sufficiently small, but such � could be very small for practical purposes. Hence we have preferred to take the

above semi-local measure. On the other hand Hu et al. [7] use as a measure the quantity

Z T

0

jRðimÞ � expðimÞj2dm;

with a suitable selected value of T . In this case, since

jRðimÞ � expðimÞj2 ¼ dðmÞ2 þ ð1� dðmÞÞ/ðmÞ2 þ Oð/4Þ;

it is clear that both dissipation and dispersion, with almost the same weight, are taken into account in the

above integral sense.

In Fig. 1 we plot the dissipation error dðmÞ as a function of m for both stability functions Rhu and Rnew in

the interval m 2 ½0; 2�. Clearly the behaviour of dnew is superior to dhu in the interval ½0; 1:6�. Further it can be

Table 1

Coefficients b5; b6, L and S for the stability functions

Stability function b5 b6 L S

RhuðzÞ 0.937206 0.951415 1.77 1.75

RnewðzÞ 0.9424 0.683201 1.19 3.82

0 0.5 1 1.5 2

-0.00075

-0.0005

-0.00025

0

0.00025

0.0005

0.00075

0.001

dhu

dnew

Fig. 1. Dissipation error dðmÞ.
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seen that dhu is monotonic decreasing for all mP 1:6 whereas dnew, which is at first an increasing function,

vanishes again at the stability limit m ¼ 3:82. In conclusion, jdhuðmÞj > jdnewðmÞj for mP 1:75 up to m ¼ 3:82.
On the other hand it follows from Fig. 2, that the dispersion error /huðmÞ is superior to the dispersion

error of the new method /new. Only in an interval ½0; m�� with m� < 1 we get a similar behaviour.
Next, after the above choice of the stability function, we must select the eleven coefficients

bi; ði ¼ 1; . . . ; 6Þ and ci; ði ¼ 1; . . . ; 5Þ satisfying the eight order conditions (5) of order four and the two

additional conditions

bTA3c ¼ b5

5!
; bTA4c ¼ b6

6!
: ð7Þ

This system of ten (nonlinear) equations with eleven free parameters possesses an infinite set of solutions.
This degree of freedom has been used to determine numerically a solution of (5) and (7) taking into account

the following natural requirements:

• jbij6 2, i ¼ 1; . . . ; n, i.e. the coefficients of the underlying quadrature formula of (3):R Dt
0
f ðtÞdt ¼ Dt

Ps
i¼1 bif ðciDtÞ be moderately sized.

• The components ci (i ¼ 1; . . . ; n) of the vector c ¼ Ae satisfy ci 6¼ cj for all i 6¼ j and ci 2 ½0; 1�, i.e. the
nodes ciDt of the underlying quadrature formula of (3) be in the interval ½0;Dt�.

• Minimize the ‘2-norm of the leading term of the local error of method (3), (ksð5Þk2) defined by
ksð5Þk22 ¼

P
j jC5;jj2 where C5;j are the coefficients of the elementary differentials of order five in the local

error expansion in powers of the step size Dt (see [6], Section II.3).

The values of the selected parameters, for which ksð5Þk2 ¼ 2:86� 10�3; are given in Table 2.

Fig. 2. Dispersion error /ðmÞ.

Table 2

Coefficients of the new 2N -storage LDD46

c1 ¼ 0 b1 ¼ 0:10893125722541 c1 ¼ 0:17985400977138

c2 ¼ 0:28878526699679 b2 ¼ 0:13201701492152 c2 ¼ 0:14081893152111

c3 ¼ 0:38176720366804 b3 ¼ 0:38911623225517 c3 ¼ 0:08255631629428

c4 ¼ 0:71262082069639 b4 ¼ �0:59203884581148 c4 ¼ 0:65804425034331

c5 ¼ 0:69606990893393 b5 ¼ 0:47385028714844 c5 ¼ 0:31862993413251

c6 ¼ 0:83050587987157 b6 ¼ 0:48812405426094
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3. Numerical experiments

In order to test the behaviour of the new LDDRK method, we present here some numerical results
obtained for several model problems associated with the wave propagation. The new scheme has been

compared with

• The 2N -storage scheme with six stages and order four of Stanescu and Habashi [11] denoted by LDD46

that was constructed on the basis of the optimized six-stages stability function of Hu et al. [7].

• The 2N -storage scheme with five stages and second order [11] denoted by LDD25 again constructed

on the optimized five stages stability function of [7].

• The popular RK method RK4 of order four [6, p. 138] which requires at least 3N -storage [4].

Problem 1. The linear convective wave equation for which the methods have been optimized

ou
ot

þ ou
ox

¼ 0; t > 0;

uðx; 0Þ ¼ K expð�x2=c2Þ;

8<
:

where u : R� Rþ ! R, with K and c real constants and whose analytic solution is

uðx; tÞ ¼ K exp½�ðx� tÞ2=c2�. In our numerical experiments we take the same values as in [11], i.e.

K ¼ 0:5; c ¼ 3.

To discretize the space variable we consider a uniform grid with nodes xj ¼ jDx for several values of Dx
that will be given below. The spatial derivative is approximated by a 9 point centered difference scheme of

8th order given by

ou
ox

ðxj; tÞ �
1

Dx

�
� 4

5
ðuj�1 � ujþ1Þ þ

1

5
ðuj�2 � ujþ2Þ �

4

105
ðuj�3 � ujþ3Þ þ

1

280
ðuj�4 � ujþ4Þ

�
: ð8Þ

The space domain extends from x ¼ �50 to x ¼ 450 and the time integration runs the interval ½0; 400�
with several fixed step sizes. The values of uðxj; tÞ for all grid points xj ¼ jDx outside the interval ½�50; 450�
are assumed to be zero because uðx; tÞ is negligible for jx� tjP 50.

Table 3 shows the maximum of the absolute errors over the integration interval measured in the ‘1 norm

for the considered methods and different values of Dx and Dt. The symbols ***** indicate that the inte-

gration process is unstable. In Fig. 3, we have depicted the efficiency curves for the four methods corre-

sponding with the stable results given in Table 3, i.e. the vertical axis shows the absolute global errors in

logarithm scale (log10 j E j) whereas the horizontal axis shows the computational cost measured by the
number of function evaluations (NFCN) required by each method.

Table 3

Absolute errors in Problem 1

Dx Dt LDD46 New LDD46 LDD25 RK4

1/2 0.8000 ***** 5.96� 10�3 1.70� 10�2 4.86� 10�2

1/2 0.7505 8.37� 10�2 4.66� 10�3 1.52� 10�2 4.17� 10�2

1/3 0.5000 ***** 8.33� 10�4 6.28� 10�3 1.25� 10�2

1/3 0.4706 2.57� 10�2 6.55� 10�4 5.39� 10�3 1.01� 10�2

1/4 0.4000 ***** 3.34� 10�4 3.53� 10�3 5.55� 10�3

1/4 0.3333 3.83� 10�3 1.61� 10�4 2.14� 10�3 2.74� 10�3

1/5 0.2701 ***** 6.91� 10�5 1.19� 10�3 1.19� 10�3

1/5 0.2556 2.79� 10�4 5.54� 10�5 1.02� 10�3 9.58� 10�4
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Problem 2. The nonlinear scalar wave model problem

ou
ot

þ 1þ ðx� tÞuð Þ ou
ox

þ c2

2

ou
ox

� �2

¼ 0; t > 0;

uðx; 0Þ ¼ K expð�x2=c2Þ;

8><
>:

where K and c are positive real constants and whose analytic solution is uðx; tÞ ¼ K expð�ðx� tÞ2=c2Þ. In
this case, the spatial domain ranges from x ¼ �50 to x ¼ 130 and as spatial discretization we have used the

same as in the above problem. The parameter values are K ¼ 1=2, c ¼ 2, and the problem has been inte-

grated up to tend ¼ 80. Again, Table 4 shows the maximum absolute errors obtained (in the ‘1 norm) with

each method in function of the step size Dt and the spatial mesh Dx, and the symbols ***** indicate that the

integration process is unstable. In Fig. 4, we show the efficiency curves (only the stable integrations) of the

four methods.
As can be observed from Tables 4 and 5, the error behaviour is favourable for the new LDD46 scheme.

In the case of larger step sizes, the integration process for the LDD46 becomes unstable whereas the new

scheme which has a larger stability interval performs properly. On the other hand, when the step size is

selected so that the integration process is stable for all methods, the new scheme also performs more ef-

ficiently than the other methods (see Figs. 3 and 4).

Table 4

Absolute errors in Problem 2

Dx Dt LDD46 New LDD46 LDD25 RK4

1/2 0.3007 ***** 8.07� 10�3 2.58� 10�2 1.94� 10�2

1/2 0.2666 3.84� 10�2 8.03� 10�3 1.99� 10�2 8.81� 10�3

1/3 0.1777 ***** 3.35� 10�4 3.62� 10�3 2.38� 10�3

1/3 0.1649 4.64� 10�3 2.82� 10�4 2.81� 10�3 1.85� 10�3

1/4 0.1501 ***** 7.90� 10�5 2.45� 10�3 *****

1/4 0.1201 3.98� 10�3 4.49� 10�5 1.16� 10�3 4.47� 10�4

1/5 0.1000 ***** 1.24� 10�5 6.82� 10�4 2.14� 10�4

1/5 0.0920 1.97� 10�4 9.26� 10�6 5.10� 10�4 1.55� 10�4

Fig. 3. Efficiency curves in Problem 1.
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Problem 3. The well-known nonlinear KdV problem [5]

ou
ot

þ 6u
ou
ox

þ o3u
ox3

¼ 0;

has the one-soliton solution given by

uðx; tÞ ¼ 2sech2ðx� 4tÞ;

where the soliton amplitude is 2 and the soliton speed is 4. We consider the temporal variable in the interval

½t0; tend� ¼ ½0; 2� and the range of the spatial variable between ½xL; xR� ¼ ½�20; 20�. Note that outside this

spatial range, the solution is 0 for all practical purposes.

To solve this problem we use a fourth-order modified Galerkin space discretization proposed by Frutos

and Sanz-Serna [5] in the uniformly spaced grid xj ¼ xL þ jðxR � xLÞ=J , j ¼ 0; 1; . . . ; J , for a given positive

integer J . If UjðtÞ denotes the approximation to uðxj; tÞ, these functions satisfy the differential system

_Uj�2 þ 26 _Uj�1 þ 66 _Uj þ 26 _Ujþ1 þ _Ujþ2

120
�
U 2

j�2 þ 10U 2
j�1 � 10U 2

jþ1 � U 2
jþ2

8Dx

� Uj�2 � 2Uj�1 þ 2Ujþ1 � Ujþ2

2Dx3
¼ 0; ðj ¼ 0; . . . ; JÞ: ð9Þ

Here it is assumed that U�2, U�1, UJþ1, UJþ2 vanish for all values of t. For the value J ¼ 89, the resulting

initial-value problem is mildly-stiff and the numerical integration has been performed for several time steps

Dt. We present here the results for Dt ¼ 0:025 because for larger time steps only the new LDD46 is stable. In

Fig. 4. Efficiency curves in Problem 2.

Table 5

Maximum global errors in Problem 3

Schemes k � k1 k � k2 k � k1
LDD46 5.2730 0.7803 0.1930

New LDD46 0.2875 0.0551 0.0300

LDD25 0.2841 0.0550 0.0304

RK4 0.2581 0.0539 0.0316
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Table 5 we display the maximum global error along the time integration for the four schemes in different

norms. The behaviour of the new method is comparable to the lower-order method LDD25 and it is clearly

superior to LDD46. In our opinion, this is due to the fact that LDD25, in spite of its low order, possesses
good stability properties and therefore for problems in which stability is an essential requirement it provides

good results. On the other hand RK4 provides also a comparable accuracy but at the price of using more

storage than the other schemes.

Fig. 5 shows the global errors of the numerical solution at the final time tend ¼ 2 for the two LDD46-

schemes, and Fig. 6 shows the numerical solutions obtained with both schemes. It should be remarked that

the numerical solution provided by the new scheme is qualitatively more accurate than the numerical so-

lution provided by the LDD46.

Problem 4. The first order hyperbolic system

ov
ot

þ u
ov
ox

� v
ou
ox

� xu ¼ 0;
ou
ot

þ u
ov
ox

� v
ou
ox

þ xv ¼ 0; 06 x6 ‘; tP 0;

with the initial and boundary conditions

vðx; 0Þ ¼ 0; uðx; 0Þ ¼ aðxÞ; 0 < x6 ‘; vð0; tÞ ¼ uð0; tÞ ¼ 0; t > 0:

Here the initial and boundary conditions have been chosen so that the problem has the analytic solution

vðx; tÞ ¼ aðxÞ sinðxtÞ; uðx; tÞ ¼ aðxÞ cosðxtÞ;

with aðxÞ ¼ xðx� ‘Þ=‘.

10 20 30 40 50 60 70 80

-0.2

0

0.2

j-component

gl
ob

al
 e

rr
ro

r

Stanescu
New

Fig. 5. Global errors in each component at tend ¼ 2.
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To solve this problem we consider an uniform grid (Dx ¼ ‘=N ) on the interval [0, ‘], and we approximate

the spatial derivatives by using second order symmetric differences at the internal grid points and one-sided

differences at the boundary point x ¼ ‘. Denoting by vjðtÞ and ujðtÞ the approximations to vðxj; tÞ and

uðxj; tÞ, respectively, we obtain the following differential system

_v1 ¼
v1u2
2Dx

� u1v2
2Dx

þ xu1;

_vj ¼ vj
ujþ1 � uj�1

2Dx
� uj

vjþ1 � vj�1

2Dx
þ xuj; j ¼ 2; . . . ;N � 1;

_vN ¼ vN
uN�2 � 4uN�1 þ 3uN

2Dx
� uN

vN�2 � 4vN�1 þ 3vN
2Dx

þ xuN ;

_u1 ¼
v1u2
2Dx

� u1v2
2Dx

� xv1;

_uj ¼ vj
ujþ1 � uj�1

2Dx
� uj

vjþ1 � vj�1

2Dx
� xvj; j ¼ 2; . . . ;N � 1;

_uN ¼ vN
uN�2 � 4uN�1 þ 3uN

2Dx
� uN

vN�2 � 4vN�1 þ 3vN
2Dx

� xvN ;

with the initial conditions

vjð0Þ ¼ 0; ujð0Þ ¼ aðxjÞ; j ¼ 1; . . . ;N :

10 20 30 40 50 60 70 80
0.5

0

0.5

1

1.5

2

j-component

U
j(2

)
Stanescu
New

Fig. 6. Numerical solution obtained with both schemes at tend ¼ 2.
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In our test we choose the parameter values ‘ ¼ 50, x ¼ 4, and the problem has been integrated up to

tend ¼ 20. In Table 6 we show the maximum absolute errors (in the ‘1 norm) for the considered methods

and different values of Dx and Dt. Again, the symbols ***** indicate that the integration process is unstable.

Fig. 7 shows the efficiency curves for the four methods corresponding with the stable integrations given in

Table 6. As it can be observed in this figure, our method turns out to be the most efficient of the tested

methods.
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